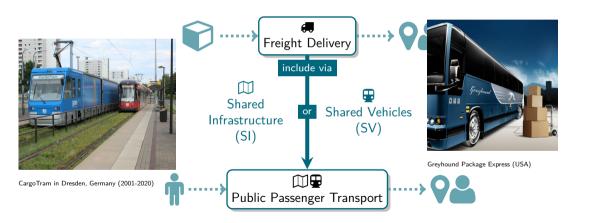


Planning Shared Passenger and Freight Transport on a Fixed Infrastructure

Lena Hörsting

University of Kiel Institute of Business Research Group Service Analytics Prof. Dr. Catherine Cleophas


igsquare lena.hoersting@bwl.uni-kiel.de

Last-Mile Delivery Workshop, Vallendar

27.06.2022

What is shared passenger and freight transport?

Current pilot projects in Germany

LastMileTram, Frankfurt (Main)

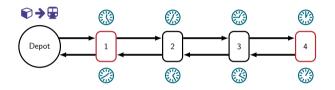
Start: 2018 http://www.relut.de

LogIKTram, Karlsruhe

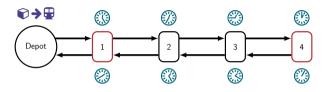
Start: 2021 www.logiktram.de

Cargo-Tram, Berlin

Start: 2021



Finding a demand-oriented train schedule


How can we efficiently schedule passengers and freight?

- ► Circular bi-directional single route
- ▶ Given passenger demand as traffic flow (arrival and alighting rate)
- ► Given freight demand, i.e., freight containers with
 - individual release time
 - soft (and hard) deadline
 - destination stop

C A U Christian-Albrechts-Universität zu Kiel

Linear program: Decisions

Aperiodic train schedule

- ▶ Departure $d_{v,s} \ge 0$ of vehicle v at stop s
- ▶ Arrival $a_{v,s} \ge 0$ of vehicle v at stop s
- ▶ Dwell time $h_{v,s} \ge 0$ of vehicle v at stop s
- ▶ Is vehicle v operating $(o_v = 1)$; or not $(o_v = 0)$?

Freight allocation

- Assign individual freight requests to vehicles
- Is request r loaded to vehicle v at stop s $(y_{r,v,s}=1)$; or not $(y_{r,v,s}=0)$?
- ▶ Accept $(u_r = 1)$ or reject $(u_r = 0)$ request r?

Linear program: Lexicographical objective

 \mathcal{S} : stops, \mathcal{P} : periods, \mathcal{R} : freight requests, \mathcal{P} : rejection penalty

$$\operatorname{lex\,min}\left\{\sum_{s\in\mathcal{S}}\sum_{p\in\mathcal{P}}\frac{w_{s,p}}{|\mathcal{S}|\cdot|\mathcal{P}|},\sum_{r\in\mathcal{R}}\frac{t_r}{|\mathcal{R}|}+P\cdot(1-u_r)\right\} \tag{1}$$

1st objective: Passengers have priority!

Minimize number of waiting passengers w_{sp} across stops s and periods p

- ightharpoonup Minimize delay t_r of freight request r
- Minimise the number of rejected requests $(u_r = 0)$

Constraints: Headway times, dwell times, service times, capacity, etc.

Linear program: Capacity restrictions

©Kay Dreyer, HfG Offenbach, 2019

②
Dwell time

©J. Schwarze, HfG Offenbach

©Porstner u. Qu, 2019

Image sources: Schocke et al., 2020

Optimisation model

Optimisation results with solver

			time	1st objective			2nd objective		
periods	stops	containers	(sec.)	sec.	value	gap	sec.	value	gap
60	14	0	2091	2091	5.59	0	0	0	0
60	14	10	1604	1554	5.59	0	49	0	0
60	14	20	2522	2502	5.59	0	20	0	0
60	14	30	35067	2658	5.59	0	32400*	0.1	1
60	14	40	4444	2825	5.59	0	1619	0.08	0
60	14	50	2117	2048	5.59	0	69	50000.24	0
180	28	0	32482	32471*	74.09	0.96	1	0	0
180	28	10	36147	32476*	43.7	0.93	3670	0	0
180	28	20	38774	32618*	49.64	0.94	6156	0	0
180	28	30	36065	32618*	45.54	0.93	3456	0	0
180	28	40	36106	32618*	51.96	0.94	3628	0	0
180	28	50	37844	32618*	26.04	0.81	5390	0	0

^{*}runtime-limit exceeded

ALNS

▶ Definition by Pisinger and Ropke, 2010

Algorithm 2 Adaptive large neighborhood search

 $x^b = x^t$:

13: until stop criterion is met14: return x^b

```
1: input: a feasible solution x

2: x^b = x; \rho^- = (1, \dots, 1); \rho^+ = (1, \dots, 1);

3: repeat

4: select destroy and repair methods d \in \Omega^- and r \in \Omega^+ using \rho^- and \rho^+;

5: x' = r(d(x));

6: if accept(x', x) then

7: x = x';

8: end if

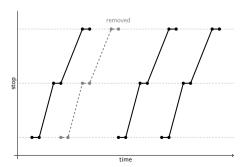
9: if (x') < c(x^b) then
```

- Addition of cargo favouring repair operators
- ► Inclusion of cargo allocation problem (solved with Gurobi)

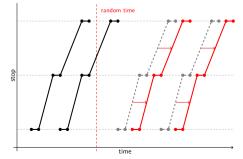
This work's extension

- ALNS for demand-oriented timetabling problem
- ► Each neighbor represents a timetable

10:


11: **end if** 12: update ρ^- and ρ^+ ;

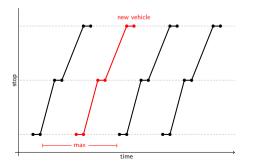
Destroy Operators (Yin et al., 2021)


Random deletion

- ► Randomly select a vehicle
- Remove selected vehicle

Random shift

- Randomly select time, direction of shift and shift interval
- Shift all vehicles departure before/after the selected time



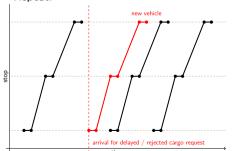
Repair Operators (Yin et al., 2021)


Greedy temporal insertion

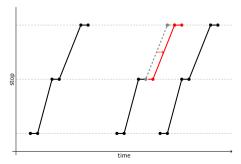
- ▶ Detect the largest (feasible) time slot in-between two vehicles.
- Insert vehicle in the centre of the time slot.
- Repeat.

Greedy passenger demand insertion

- Detect (feasible) time slot with highest passenger congestion.
- ▶ Insert vehicle in the time slot.
- Repeat.

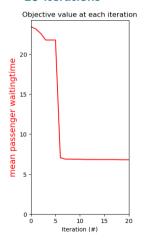


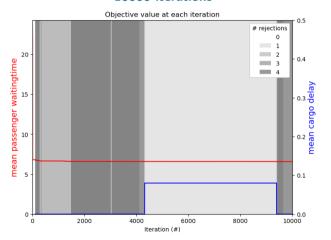
Repair Operators (Extension)


Greedy freight demand insertion

- ▶ Detect rejected cargo request OR cargo request with highest delay
- Insert vehicle in the next feasible time slot after cargo request release.
- Repeat.

Increase service time buffer

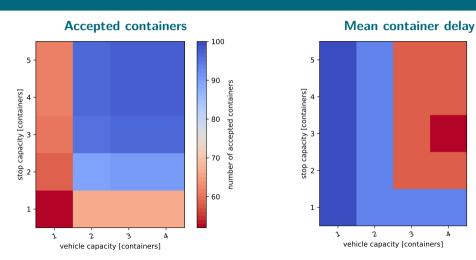

- ▶ Detect the vehicle and stop with minimal slack between service and dwell time.
- ▶ Increase the dwell time by one time unit.



Development of the lexicographical objective function

20 iterations

10000 iterations



Cargo service evaluation for varying capacities

0.08

0.01

▶ Model supports, e.g., estimation of required cargo capacity for stops and vehicles.

Conclusion

Summary

- ☑ Bi-objective train schedule and cargo allocation: Passengers first, cargo second
- Extension of Adaptive Large Neighbourhood Search by Yin et al., 2021
- ☑ Integration of cargo allocation problem

Next steps

- ☐ Store and consider intermediate solutions
- ☐ Different representative instances to consider stochasticity (currently expected values)
- ☐ *Tram für Kiel:* Real data provided by city Kiel

Thank you for your attention! Questions?

Working paper available at SSRN: https://ssrn.com/abstract=3886691

References

Lena Hörsting

- Behiri, W., Belmokhtar-Berraf, S., & Chu, C. (2018). Urban freight transport using passenger rail network: Scientific issues and quantitative analysis. Transportation Research Part E: Logistics and Transportation Review, 115, 227–245.
- Ghilas, V., Demir, E., & Van Woensel, T. (2016). An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows and scheduled lines. *Computers & Operations Research*, 72, 12–30.
- Li, Z., Shalaby, A., Roorda, M. J., & Mao, B. (2021). Urban rail service design for collaborative passenger and freight transport. *Transportation Research Part E: Logistics and Transportation Review*, 147, 102205.
- Masson, R., Trentini, A., Lehuédé, F., Malhéné, N., Péton, O., & Tlahig, H. (2017). Optimization of a city logistics transportation system with mixed passengers and goods. EURO Journal on Transportation and Logistics, 6(1), 81–109.
- Motraghi, A., & Marinov, M. V. (2012). Analysis of urban freight by rail using event based simulation. Simulation Modelling Practice and Theory, 25, 73–89.
- Ozturk, O., & Patrick, J. (2018). An optimization model for freight transport using urban rail transit. European Journal of Operational Research, 267(3), 1110–1121.
- Pisinger, D., & Ropke, S. (2010). Large neighborhood search. Handbook of metaheuristics (pp. 399-419). Springer.
- Schocke, K.-O., Schäfer, P. K., Höhl, S., & Gilbert, A. (2020). LastMileTram Empirische Forschung zum Einsatz einer Güterstraßenbahn am Beispiel Frankfurt am Main. Abschlussbericht (tech. rep.). Frankfurt University of Applied Science.
- Yin, J., D'Ariano, A., Wang, Y., Yang, L., & Tang, T. (2021). Timetable coordination in a rail transit network with time-dependent passenger demand. European Journal of Operational Research.